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Glassy dynamics: effective temperatures and intermittencies from a two-state model
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We show the existence of intermittent dynamics in one of the simplest model of a glassy system:
the two-state model, which has been used® to explain the origin of the violation of the fluctuation-
dissipation theorem. The dynamics is analyzed through a Langevin equation for the evolution of the
state of the system through its energy landscape. The results obtained concerning the violation factor
and the non-Gaussian nature of the fluctuations are in good qualitative agreement with experiments
measuring the effective temperature and the voltage fluctuations in gels and in polymer glasses. The
method proposed can be useful to study the dynamics of other slow relaxation systems in which

non-Gaussian fluctuations have been observed.
I. INTRODUCTION

Complex systems are often distinguished by the exis-
tence of a very intricate free energy landscape consist-
ing of many barriers which the system has to overcome
to evolve. It is precisely the presence of these barriers
the responsible for the slow relaxation dynamics which
manifests in the appearance of peculiar phenomena as
aging, lack of a fluctuation-dissipation theorem and in-
termittencies caused by the presence of large fluctuations.
These features, predicted and observed in systems of dif-
ferent nature as glasses, granular flows, foams, crum-
pled materials and in the dynamics of the disordered
systems?2:4:3.6.7 have attracted the interest of many re-
searchers during the last years with the purpose of de-

scribing the main features of slow relaxation dynamics®.

In a previous paper!, we have proposed a minimal re-
laxation model aimed at characterizing the dynamics of
a system relaxing in two very different time scales, which
are related to inter-well and intra-well relaxation pro-
cesses. Two scenarios were analyzed for this purpose.
In the first of them, the system may explore the whole
reaction coordinate space undergoing a diffusion process
described by a Fokker-Planck equation?, which accounts
for the intra-well and inter-well relaxations. In the other,
obtained from the first one by eliminating the fast vari-
able, the system undergoes an activated process. In spite
of its simplicity the model shows some of the peculiar
features of the dynamics of slow relaxation systems and
proposes an explanation of why and how the fluctuation-
dissipation is violated. It was found that the violation
factor or effective temperature depends on the observ-
able and on the initial populations in the wells. This
result shows that the effective temperature does not uni-
vocally characterize the thermal state of a glassy system

undergoing activated dynamicsi®.

Our purpose in this paper is to use that model to ex-
plain the presence of intermittencies in the dynamics of
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a system in a glassy phase and the non-Gaussian nature
of the probability distribution function, which have re-
cently been observed in measurements of the dielectric
properties of gels and polymer glasses'!2, and in some
theoretical studies of spin-glass models'2:14,

The paper is organized as follows. In Section 2, we
analyze some of the main traits of glassy dynamics from
a two-state model. Section 3 is devoted to present the
results concerning the intermittent behavior and the non-
Gaussian nature of the fluctuations. Some conclusions
and perspectives are presented in the final section.

II. GLASSY DYNAMICS FROM A TWO-STATE
MODEL

In a two-state model, the minimal relaxation model for
glassy systemst®16:17 one assumes that the process con-
sists of two main steps: a slow relaxation, in which the
coordinate characterizing the state of the system jumps
from a potential well to the next one, and a fast equi-
libration process in the well. It has been shown! that
the dynamics of the system can be analyzed in terms of
a Fokker-Planck equation describing a diffusion process

through the free energy landscape ® (v},
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In the simplest case, ®(v) would be just a bistable
potential. In the previous equation, p(v,t) is the prob-
ability distribution function which depends on the order
parameter or reaction coordinate v, D is the diffusion
coefficient, T is the temperature of the bath and kp the
Boltzmann constant. When the height of the barrier sep-
arating the two minima of the potential is large enough
compared to thermal energy the systems achieves a state
of quasi-equilibrium in each well. The evolution of the
system then proceeds by jumps from one well to the other
undergoing an activated process. The dynamics corre-
sponding to this situation can be obtained by eliminat-
ing the fast degrees of freedom in such a way that it can



be characterized simply by the populations at each well.
The Fokker-Planck equation then reduces to the follow-
ing kinetic equations governing the population dynamics
at both wells!-2
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where the current j(t) is defined as:

§0) = o =i = (ki — ko) (3)

Here n4(t) and na(t) are the populations at each well
and k_, — are the forward and backward reaction rates
given by
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where 71 and 7 denote the position of the two minima
and g the position of the top at the barrier. The noise
term ;" (t) results from the coarsening of the correspond-
ing random term J"(v,¢) in the Langevin equation re-
lated to the Fokker-Planck equation ([l);f. Whereas the
latter satisfies the fluctuation-dissipation theorem inher-
ent to the diffusion process along the reaction coordinate
formulated as2?

(J" (7, )" (7', 1)) = 2D{p(v,1))d(y =)ot = t')  (5)

the former does not obey a similar expression. Its cor-
relation is given byl2:
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where the last term is the value of the correlation at
equilibrium, and n{? is the equilibrium population in the
first well.

This result clearly indicates that the violation of the
fluctuation- dissipation theorem is precisely due to the
coarsening of the description. When one eliminates
the fast variables reducing the dynamics to that of an
activated process the system cannot progressively pass
through local equilibrium states from one well to the
other but proceeds by jumps and consequently remains
outside equilibrium. This explains why the fluctuation-
dissipation theorem, a result strictly valid when the fluc-
tuations take place around an equilibrium state?!, is not
fulfilled.

From the model proposed we can analyze the non-
equilibrium response of the system. Let us assume an
external perturbation —e(¢)O(t) that is plugged in at
the waiting time t,,, defined as the time elapsed af-
ter quenching (O(t) is the observable considered and
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FIG. 1: The effective temperature plotted as a function of
the frequency (in arbitrary units) for different values of the
waiting time.

e(t) = eof(t — ty) is a generelized force that is coupled
to the observable). The response is then given by

Ree= 200 g
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where the average of the observable is defined as

(60(t)) = / O(M)5p(y, )y = (01 — Ox)bm,  (8)

whereas the values O; and O, are the values of the ob-
servable at the minima 1 and 2, respectively. On the
other hand, the correlation is

Co(t,tw) = 6(tt”)/T(01—02)[J9(01—Oo)—JF(Oz—(O)O)]-
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Both quantities satisfy the relation
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in which the quantity Teoff plays the role of an “effective”
temperature given by

T
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Here 7= = (k_, + k) is the relaxation time of the
process and the parameter A has the form

k—(n1(0))(01 — Og) — k—(n2(0)(O2 — Op)
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kﬂniq(Ol — 02)

(12)



Since the equilibrium state is achieved for t,, — 00, one
can easily verify that the effective temperature coincides
with that of the bath and the relation ([[d) becomes the
fluctuation-dissipation theorem.

An important consequence of our previous analysis is
that the effective temperature is not a robust quantity
since it depends on the observable considered as well as
on the initial populations at the wells. We then conclude
that in the case of an activated process that quantity
is a parameter measuring the distance of the system to
the equilibrium state but it is not universal and conse-
quently can hardly be considered as a thermodynamic
temperature!9.

Our expression Eq.([[) can be used to reproduce the
dependence of the violation factor on the frequency ob-
served in experiments't12. If we assume that the whole
relaxation process takes place through consecutive acti-
vated processes for which Eq.( ) applies, we can infer a
global behavior of that quantity by identifying the in-
verse of the relaxation time with a frequency. By consid-
ering the case A = 0, in which the violation factor does
not depend on the observable , we then conclude that
the effective temperature at low frequencies behaves as:
Tefr ~ w1, In the experiments one finds that the effec-
tive temperature decreases when increasing the frequency
following a power law whose exponent is in between —1.1
and —1.22. As in the experiments, it is found that the
effective temperature tends to the bath temperature for
very large waiting times (see Fig. 1).

III. INTERMITTENT DYNAMICS

We will analyze in this section the intermittent behav-
ior of the fluctuations taking place when the system is
quenched below the glass transition. This type of be-
havior has been reported in experiments measuring the
fluctuation spectrum and the response of a Laponite solu-
tion and of a polymer glass!112, To this purpose, we will
particularize the model discussed in Sec. 2 to the case
of the quartic potential plotted in Fig. 2. The dynamics
of this model is governed by the Fokker-Planck equation
@ or through the equivalent Langevin equation

dy

dt

where J” has been considered a Gaussian white noise

process having, as a first approximation, a constant am-

plitude: D(p(v,t)) = . We will see that this approxi-
mation is enough to explain the experimental results.

By numerical simulation of the Langevin equation (I3),

we have computed the value of the following observable

(v =7y —2) +J" (13)
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which has a piece-wise dependence on ~, having a zero
value at 71 and ~3. In our case we have taken y; = —2

and v5 = 3 and the parameters a; and as have been
chosen arbitrarily as a3 = 6 and as = 9, ensuring the
continuity of the observable. The location of the maxi-
mum of the observable has been placed at v = 1, to show
in a clearer way the occurrence of a transition between
the two wells. When the state is at the top of the barrier
the probability to go back to the minimum ~; is 50%.

The value of «a should be consistent with the non-
stationary nature of the process and has to be intrin-
sically related to the waiting time. Therefore, we have
use different values of this parameter to mimic different
values of the waiting time.

In Fig. [Mlwe have represented the value of the observ-
able O(7) corresponding to a single trajectory obtained
from the simulations of Eq.([3)), with o = 1.5. We ob-
serve the presence of an intermittent event, which is the
signature of a jump from one well to another. Therefore,
the presence of intermittencies is a consequence of the
activated nature of the relaxation process.

Averaging over many trajectories we have obtained
the probability distribution function for the observable,
which has been plotted in Fig. 4, for different values of
a. The non-Gaussian form of the curves is, in our model,
a consequence of the non-parabolic form of the poten-
tial. Intermittencies add more weight to the tails of the
distribution, thus stressing its non-Gaussian nature.

IV. CONCLUSIONS

In this paper we have used the activation over a bar-
rier to model the evolution of a system when is quenched
below the glass transition. Using as a model a simple
quartic potential, we have proved the existence of an in-
termittent dynamics in the aging process caused by the
presence of large fluctuations. Similar behavior has been
observed in recent experiments. We have shown that the
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FIG. 2: Quartic potential used in our model.
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FIG. 3: The evolution of a single realization of the observable
O(), corresponding to « = 1.5. The single step-time has
been taken as 0.01. We have considered 10000 time intervals.

probability distribution function corresponding to those
events deviates from its Gaussian form observed for sys-
tems close to equilibrium and exhibits exponential tails
as those encountered experimentally.

The model proposed and its possible generaliza-
tions could, with the help of the stochastic processes
theory22:23 constitute a useful tool to characterize the
dynamics of systems far from equilibrium for which a
common phenomenology in the behavior of the fluctua-

tions is being found.

P(O)

FIG. 4: Probability distribution function for different values
of o as a function of the values of the observable, obtained by
performing simulation of Eq.([I3)). The solid line is a Gaussian
curve plotted just for comparison.

Acknowledgments

This work was partially supported by the DGICYT
and FEDER under Grant No. BFM2002-01267. D. R.
acknowledges support by the Ministerio de Ciencia y Tec-
nologia of Spain through the “Ramoén y Cajal” program.

! A. Pérez-Madrid, D. Reguera, J.M.Rubi, Physica A 329
(2003) 357-364.

2 J.M. Rubi, C. Pérez-Vicente (Eds.), Complex Behaviour of
Glassy Systems, Springer, Berlin, 1997.

% C.A. Angell, Science 267 (1995) 1924.

* E. Ben-Naim, J.B. Knight, E.R. Nowak, H.M. Jaeger, S.R.
Nagel, Physica D 123 (1998) 380.

5 P. Sollich, F. Lequeux, P. Hébreud, M.E. Cates, Phys. Rev
Lett. 78 (1997) 2020.

6 K. Matan, R.B. Williams, T.A. Witten, S.R. Nagel, Phys.
Rev. Lett. 88 (2002) 076101.

7 R. Morgado, F. Oliveira, G.G. Batrouni, A. Hansen, Phys.
Rev. Lett. 89 (2002) 100601.

8 L.F. Cugliandolo, J. Kurchan, Phys. Rev. Lett. 71 (1997)
3898.

9 U. Mohanty, 1. Oppenheim, C.H. Taubes, Science 266
(1994)425.

10 3. M. Vilar, J.M. Rubi, Proc. Nat. Acad. Sci. 98 (2001)
11081.

' L. Buisson, L. Bellon and S. Ciliberto, J. Phys.: Condens.
Matter 15, pp. S1163-S1179, 2003.

12 1, Buisson, M. Ciccotti, L. Bellon and S. Ciliberto, Proc.
SPIE Int. Soc. Opt. Eng. 5469, 150 (2004).

13 A. Crisanti and F. Ritort, Europhys. Lett. 66 (2), pp. 253-
259 (2004).

' P. Sibani and H.J. Jensen, arXiv: cond-mat /0403212 v2
(25 May 2004).

!5 D.A. Huse, D.S. Fisher, Phys. Rev. Lett. 57 (1986) 2203.

'8 S A. Langer, J.P. Sethna, Phys. Rev. Lett. 61 (1988) 570.

17 S.A. Langer, J.P. Sethna, R. Grannan, Phys. Rev. B 41
(1990) 2261.

8 1. Pagonabarraga, A. Pérez-Madrid, J.M. Rubi, Physica A

237 (1997) 205.

In order to solve the master equation (£) we need to impose

reflective boundary conditions, to confine the value of the

population between zero and one. See the art. G. Schmid,

I. Goychuk, and P. Hinggi, Europhys. Lett. 56 (2001) 22.

20 [, D. Landau and E.M. Lifshitz, Course of Theoretical
Physics, vol. 9 (Pergamon Press, New York 1980).

21 H.B. Callen and R.F. Greene, Phys. Rev. 86 (1952) 702;
R.F. Greene and H.B. Callen, Phys. Rev. 88 (1952)1387.

2 P, Hinggi, P. Talkner, M. Borkevec, Rev. Mod. Phys. 62
(1990) 251.

23 P. Talkner and J. Luczka, Phys. Rev. E 69 (2004) 046109.

19


http://aps.arXiv.org/abs/cond-mat/0403212

	Introduction
	Glassy dynamics from a two-state model
	Intermittent dynamics
	Conclusions
	Acknowledgments
	References

